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A new model is presented to describe flow in segments of collapsible tube mounted 
between two rigid tubes and surrounded by a pressurized container. The new features 
of the model are the inclusion of (a) longitudinal wall tension and (b) energy loss in 
the separated flow downstream of the time-dependent constriction in a collapsing 
tube, in a manner which is consistent with the one-dimensional equations of motion. 
As well as accurately simulating steady-state collapse, the model predicts self-excited 
oscillations whose amplitude is large enough to be observable only if the flow in the 
collapsible tube becomes supercritical somewhere (fluid speed exceeding long-wave 
propagation speed). The dynamics of the oscillations is dominated by longitudinal 
movement of the point of flow separation, in response to the adverse pressure gradient 
associated with waves propagating backwards and forwards between the (moving) 
narrowest point of the constriction and the tube outlet. 

1. Introduction 
Virtually all fluid-carrying conduits in the body have elastic walls and can collapse 

if subjected to a sufficiently negative transmural (internal minus external) pressure. 
Examples include blood vessels, bronchial airways, the urethra, the gut (Shapiro 
1977a). When fluid flows along such a tube, even the frictional pressure drop can be 
enough to trigger collapse. There have been a large number of laboratory experiments, 
using rubber tubes, designed to investigate such flow-induced collapse, and a typical 
experiment is depicted in figure 1. A length of collapsible tube is mounted horizontally 
between two rigid tubes, to which it is clamped, and is surrounded by a chamber in 
which the pressure can be independently adjusted (this arrangement is often called 
a ‘Starling resistor’). Incompressible fluid flows along the tube from a constant-head 
reservoir, and the flow rate can be controlled by adjusting the resistances of the rigid 
parts of the system upstream and downstream of the collapsible segment. The 
Reynolds number is commonly in the range 5WmO. Two principal results have in 
general been obtained from these experiments. (i) Above a critical value, the flow rate 
depends on the difference between upstream pressure and chamber pressure and is 
independent of the pressure and resistance downstream of the collapsible segment 
(‘flow limitation ’). (ii) Even in experiments designed to investigate steady pressure- 
flow relationships, unsteady flow has commonly been observed : large-amplitude 
self-excited oscillations develop in the tube cross-sectional area and the outflow 
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FIQURE 1. Sketch of a conventional collapsible-tube experiment, showing separated flow at the 
constriction; k, represents a downstream control valve; R is a radius of curvature of the longitudinal 
section. 

velocity for a range of values of the governing parameters (Conrad 1969; Katz, Chen 
& Moreno 1969; Ur & Gordon 1970; Griffiths 1977; Brower & Scholten 1975; Bonis 
& Ribreau 1978; Lyon et al. 1981 ; Bertram 1982). It is thought that such oscillations 
may be responsible for the Korotkoff sounds heard when the brachial artery is 
compressed by a blood-pressure-measuring cuff (Ur & Gordon 1970; Pedley 1980; 
Conrad, McQueen & Yellin 1980). 

There have been several attempts to explain theoretically the self-excited oscilla- 
tions, and these can be divided into two groups. One group can be classified as 
lumped-parameter models, in which the geometry of the collapsible segment is 
represented by one or two time-dependent variables such as the cross-sectional area 
AN a t  the narrowest point, and the elastic properties are represented by a single-valued 
relationship between AN and the transmural pressure at the narrowest point. 
Conservation of fluid mass and momentum or energy are represented by integral 
forms of the governing equations. Such models do predict self-excited oscillations in 
certain circumstances, and serve to emphasize the important constraints exerted on 
such oscillations by the mechanical properties of the upstream and downstream rigid 
segments (Conrad 1969; Katz et al. 1969; Schoendorfer & Shapiro 1977; Conrad, 
Cohen & McQueen 1978; Cancelli & Chiocchia 1979; Pedley 1980; Bertram & Pedley 
1982). An important factor in the predicted oscillations, emphasized particularly by 
Bertram & Pedley (1982), is the amount of energy lost in the flow emerging as a 
turbulent jet from the time-dependent constriction: if no energy is lost, exponential 
collapse to zero cross-sectional area is predicted, with no oscillations; if all the excess 
kinetic energy in the jet is lost, so that there is no pressure recovery downstream, 
steady flow is always possible and there are no oscillations ; only if some energy loss 
and some pressure recovery are allowed are oscillations predicted. 

The second group of theories is based on the experimental observation, e.g. by 
Brower & Scholten (1975), Griffiths (1977) and Bonis & Ribreau (1978), that 
breakdown of steady flow through the collapsible segment appears to occur only if 
the cross-sectionally averaged fluid velocity in the tube exceeds the local value of the 
speed of propagation of small-amplitude pressure waves, so that signals cannot be 
propagated upstream and the flow is ‘supercritical’. The mechanism for the onset 
of unsteady behaviour is then analogous to the choking of sonic gas flow in a nozzle, 
and can be analysed by a one-dimensional model in which the elastic properties of 
the tube are represented by a ‘tube law’; i.e. the transmural pressure at  any point 
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is taken to be a single-valued function of the cross-sectional area at that point. The 
weakness of the lumped-parameter models is that they cannot incorporate wave 
propagation and therefore cannot distinguish between subcritical and supercritical 
flow. The weakness of most one-dimensional models is that, although they predict 
the onset of unsteady behaviour at a particular point in the tube, they have not been 
used to model the ensuing oscillations because they cannot incorporate either energy 
loss in the separated jet or the mechanical properties of the rigid tubes. An exception 
is the attempt by R e p  (1974), subsequently developed more fully by Shimizu t 
Tanida (1983), to analyse the motion in terms of the reflection of elastic jumps 
(analogous to shock waves) at the ends of the collapsible segment. Mention should 
also be made of the exhaustive study of unsteady flow in collapsible tubes, using 
one-dimensional theory, by Kamm & Shapiro (1979), who successfully modelled 
damped oscillations in a particular experiment but did not seek to model sustained, 
self-excited oscillations in a relatively short collapsible segment such as that of 
figure 1. 

The purpose of the present paper is to show the development and the results of 
a new, composite model of a finite length of collapsible tube, incorporating both 
one-dimensional, wave-propagation effects and the important aspects of the lumped- 
parameter models. The model has two novel features which are important in the 
prediction of oscillatory behaviour. One is the inclusion of longitudinal wall tension 
in the description of tube elastic properties, and the other is a method of describing 
the energy loss in the separated jet ina way that is consistent with the one-dimensional 
flow equations. Despite these new features, the model remains qualitative, highlighting 
the main physical effects rather than attempting a precise simulation of every factor 
in an experiment. The model is developed in $2, the numerical method used to 
integrate the governing equations is outlined in $3, and the results are given in $4, 
for non-oscillatory cases, and $5,  for cases in w%ich self-sustained oscillations develop. 
Section 6 provides some preliminary comparisons with experiment. 

2. The mathematical model 
2.1. The conventional one-dimensional equations 

In  a one-dimensional theory the cross-sectional area A of the collapsible tube, the 
internal pressure p ,  and the cross-sectionally averaged longitudinal velocity U are 
taken to be functions of the longitudinal coordinate z and of time t .  When a tube 
law exists, the elastic properties of the tube are represented by an equation of the 
form 

P - P ,  = &4), (1) 

where p,(t)  is the chamber pressure, uniform but in general a function of time, and 
p ( A )  is a single-valued function which can in principle be determined by static 
measurements in the absence of flow ; its shape in a particular experiment is shown 
in figure 2 (Kececioglu et al. 1981). Bertram 6 Pedley (1982) chose a form of p ( A )  
that agrees with the well-known similarity solution for small A (Flaherty, Keller & 
Rubinow 1972), is very compliant for intermediate A, and is linear and stiff when 
the tube cross-section is circular. They took 

where a = A/A, ,  A, is the cross-sectional area when the tube cross-section is circular 
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FIQURE 2. Dimensionless pressurearea relation for a uniform collapsible tube, showing cross- 
sectional shapes (after Kececioglu et al. 1981). Broken curve: equation ( 3 4  with k = 100. 

and unstretched, K p  is proportional to the circumferential bending stiffness, and P(a) 
is given by 

P(a) = I-a-D for a < 1,  

P(a) = k(a-1)  for a > 1, 

where k is a constant, taken here to be 100. In this paper we take a slightly modified 
form of this law, with continuous slope, as follows: 

P(a)  = k{a-u2+u,  e--a~(a-0.85)) for 0.95 < a, 

(3a)  1 ( 3 b )  

= - (b ,  +a-'.6) for a > 0.95, 
where 

a, = 12.410926, u2 = 1 +a3 e-0*05a1, 

1 - 1 .5(0.95)-2.5 
k ]/a1, b, = k ( ~ ~ - u ~ - O . 9 5 ) - ( 0 . 9 5 ) - ~ ~ ~ .  

This is 0 a t  a = 1 ,  agrees with (3b)  for large a, and with (3u)  for small a; it is plotted 
on figure 2. 

The conservation-of-mass equation, for an incompressible fluid in a horizontal tube, 
is 

A,+ (GA), = 0, (4) 

where suffixes x, t denote partial differentiation. If the fluid is inviscid and the tube 
is slowly varying in x, so that the velocity profile is approximately flat and transverse 
velocities are negligible, the momentum equation is 

1 

P 
ut+uiix = --px, 
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where p is the constant fluid density. From (l), the right-hand side of ( 5 )  can be 
rewritten as 

(6) -A A,, where ca = - P ( A ) ;  

standard theory shows that c is the speed of propagation of small-amplitude waves 
in the absence of a mean flow. 

At high values of the Reynolds number Re, viscous friction and energy dissipation 
have a relatively small effect when the flow is attached, unless the cross-sectional area 
becomes very small, and a large effect when flow separation has occurred. The 
standard one-dimensional models consider only attached flow, for which (5 )  is 
replaced by 

(7) 

where the friction term F is positive. In our model the magnitude of the friction in 
regions of attached flow (i.e. upstream of the narrowest point in the tube) is not 
important. For the record, we used the following, quasi-steady estimates for F in such 
regions : 

8 A 

P 

C2 

A Ut ,+uU,  = -- A,-F(A,ii,t)U, 

F = 8lcvA-' for Re < 4000 and A > A, 
(laminar flow, circular tube) ; 

(laminar flow, elliptical tube; see Wild, Pedley & Riley 1977); 

(turbulent flow, circular tube; see Schlichting 1908 p. 561); 

F = 8xvA, A-a for Re < 4000 and A < A, ( 8 b )  

F=O.l4v;IfiItA-% forRe>4000andA> A, (8c) 

A2 -0 
F = 0,14vf 1 U If (%) for Re > 4000 and A < A, 

(turbulent flow, elliptical tube). 

Note too that the inertia term in (7) should be modified whenever the velocity profile 
is not approximately flat (Rouse 1950, p. 57), and therefore retaining the term Uii, 
is more valid for turbulent flow or for high-frequency unsteady flow than for 
quasi-steady laminar flow. 

2.2. Choking 
Here we consider steady flow, and suppose that at the upstream end (x = 0) of the 
collapsible segment the tube is distended (A > A,) and c > ii > 0. The steady 
versions of (4) and (7), with (6), then yield 

FiiA 
A, = --' 

Now UA is the constant flow rate, F is positive, and c2 > i2 initially, so the right-hand 
side of (9) is negative. Thus A starts to decrease, and U will correspondingly increase. 
Moreover, the tube becomes more compliant as A decreases (figure 2), at least until 
A becomes very small, so c will decrease. Thus if the collapsible segment is long enough 
(and if U is not very much smaller than c, in which case the flow would probably be 
dominated by viscosity) a value of x will be reached at  which -A, is predicted to 
be infinite. This leads to choking, and shows that steady flow is impossible if U = c 

13 FLM 157 
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anywhere ; if that happens, the model must have broken down, and either unsteadiness 
develops or other neglected physical factors become important. 

Even if choking does not develop because, for example, the collapsible segment is 
not long enough the model must still break down near the downstream end 2 = L, 
since A is less than the area of the downstream rigid tube and yet (9) still gives 
A, < 0. Mathematically, (9) is a first-order equation for A@), and only one boundary 
condition (at 2 = 0 say) can therefore be satisfied once the flow rate GA has been 
specified. To increase the order of the equation we have to allow for longitudinal 
tension and curvature in the tube wall. 

2.3. Longitudinal tension 
A tube law of the form (1) cannot account for effects associated with longitudinal 
bending or stretching of the tube wall. Not only will non-uniform variations in 
cross-sectional area induce variable longitudinal stresses, but, whenever a tube is 
mounted as in figure 1 ,  there is likely to be a considerable longitudinal tension in the 
walls even when there is no flow. If there is any longitudinal curvature, this will 
contribute to the transmural pressure. McClurken et al. (1981) discussed these various 
elastic effects, concluding that the initial longitudinal tension would in their 
experiments make the dominant contribution. We follow them and replace ( 1 )  by the 
following : 

(10) 

where T is the longitudinal tension per unit perimeter, assumed to remain approxi- 
mately constant (variations due to longitudinal viscous shear stress being neglected, 
for example), and R is a measure of the longitudinal radius of curvature, positive 
when most of the tube's cross-section is concave outwards (figure 1 ) .  Wall inertia, 
viscoelasticity, and many of the complicated details of large-deformation, non- 
axisymmetric shell theory are neglected in (lo), which is still a very crude approxi- 
mation. A precise specification of the relationship between R and the cross-sectional 
shape or area would therefore be inappropriate. We again follow McClurken et al. 
(1981) in recognizing that, where the tube is collapsed, the parts of the cross-section 
in which longitudinal tension will have most effect are approximately parallel-sided, 
at a distance y (say) from the plane of symmetry. We make one further simplification, 
taking y to be proportional to A, so that 1/R is finally given by 

T 
R P - P ,  = %4)--, 

D,A, 
R 2A, 

where Do and A, are the diameter and cross-sectional area of the tube when it is 
circular and undeformed, and the factor arises because the wall is represented by 
two membranes. 

2.4. The separated-flow region 
In a lumped-parameter model, the energy loss associated with the separated jet can 
be represented by an equation for the pressure rise Ap between the narrowest point 
and the region of uniform velocity u1 and area A, downstream, as a function of the 
area A, at the narrowest point. Pedley (1980), for example, assumed that this energy 
loss was quasi-steady and used the well-known Bordaxarnot condition, deduced 
from momentum flux arguments, for the pressure rise downstream of an abrupt 
expansion : 
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The positive sign indicates some pressure recovery in the jet. However, such a lumped 
pressure change cannot be used in the present model, since our description of the 
elastic wall requires a knowledge of the continuous pressure distribution all the way 
to x = L, downstream of the narrowest point. 

Instead, we note first that, in steady flow at least, the point of separation will be 
determined by the strength of the adverse pressure gradient in the expansion region. 
We therefore propose that, as collapse proceeds, separation will take place at the value 
of x, say x,, at which i?p/ax first exceeds a critical value: 

Y1 PG 
P Z ’ D , ’  

where the dimensional scaling is based on the local dynamic pressure pUz and the 
undisturbed tube diameter Do (the most easily available lengthscale), and y1 is a 
numerical constant. The value of y1 will depend on the local geometry: for 
Fa lknedkan  flow with an adverse pressure gradient and with Do replaced by 
longitudinal distance x, y1 E 0.09 for incipient separation (Schlichting 1968, section 
IXa). Blasius’s expansion for steady flow past a circular cylinder (diameter Do) gives 
y1 x 0.69, while the KBrmBn-Pohlhausen method for flow past an elliptic cylinder 
with axis ratio 8: 1 and major axis Do gives y1 x 0.35 (Schlichting, section 1Xc-d). 
In this paper we have arbitrarily taken y1 = 0.3; a check with y1 = 0.2 did not alter 
the qualitative behaviour (see below). It is assumed that the flow remains separated 
between x = x, and x = L, the downstream end of the collapsible segment, although 
this would not be true for a time of about (L-x,)/U. When the flow is slowing down 
or the collapse is becoming less severe, the flow will cease to be separated, the 
separation point being advected downstream. We account for this by requiring that 
the flow becomes attached again if, at x = x,, 

Yz PG 
P Z < D , ’  

where yz is another constant (chosen equal to 0.05 or 0.1 here), smaller than y1 since 
there is hysteresis in the separation process. Thus the separation point can move 
downstream as well as upstream, according to the local pressure distribution. In some 
of our runs x, was held fixed as soon as separation began for the first time (so the 
separated-flow region could not disappear), and this made a considerable difference. 

In  order to account for the energy loss in the diverging, separated-flow region, we 
again use momentum arguments, as follows. Write the x-component of velocity as 
u = U+u’, where, by definition, 

I’, U ’ d A  = 0. 

Integrating the x-component of the equation of motion across the tube (cf. (7)), we 
obtain 

U +- W+- +-- u”dA=-F(A,U)U,  
:x (I ;) :x 

as long as the normal component of velocity at the tube wall is negligibly small. 
In  steady flow, the diverging region immediately downstream of the separation 

point is characterized by a more or less parallel-sided jet (velocity uo, say) surrounded 
13-2 
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by an increasingly wide region of relatively stagnant fluid. The last term on the 
left-hand side of (14) is then approximately equal to 

a 00- N -- ($T2), 
u2 A2 i3A 

As ax ax 

and is clearly positive. There is no pressure recovery in a parallel-sided jet ; to allow 
for some pressure recovery, we take 

a i a  ;id* ax 
u'2 dA = (x - 1) - (W) > 0, 

where x is a constant between 0 and 1 ,  everywhere in the diverging region. If x = 1 
there is no energy loss (no separation); if x = 0 there is no pressure recovery. The 
Bordaearnot condition (12) is equivalent, on integration of (14), to choosing 
x = 2/(1+A1/AN), which takes the value 0.18 when AN/A1 = 0.1, for example; in 
this paper we take x = 0.2 or 0.5. Note that this model is not valid in all flow 
configurations. For example, in a uniform tube, in which departures from fully 
developed flow decay with distance (such as the downstream rigid tube in our case), 
the quantity a/ax f A  uf2 dA is negative and aii/ax is zero, so (15) cannot be used. 

In  unsteady flow there will be a time delay between the onset of separation and 
the development of the jet. Bertram & Pedley (1983) have measured this delay for 
the particular case of impulsively started flow in a two-dimensional indented channel, 
and found it to be approximately 7D0/U. Here, however, we neglect such time delays 
and assume that the flow in the separated region (and hence the integral in (14)) is 
quasi-steady. Combining (14) and (15) we thus obtain 

1 Gt+xiiiiX = --p,-F(A,G)ii. 
P 

This will be used in place of (7) in the separated-flow region (and, in general, F will 
be set to zero there because it has negligible effect for the parameter values chosen 
by us). 

2.5. Wave propagation 
The linearized version of the conventional model of $2.1, in the absence of friction 
but in the presence of a uniform mean flow with velocity U, predicts that small- 
amplitude waves are propagated non-dispersively downstream with speed c + ii and 
upstream with speed c-ii, where c is given by (6) evaluated a t  the undisturbed area 
x. Hence no information can travel upstream if ii 2 c, which explains the choking 
phenomenon. It is instructive to calculate the possible speeds of wave propagation 
in a collapsible tube according to the present model, governed by equations (4), (lo), 
(11) and (16), in place of (4), (1)  and (5). 

We perturb the variables A, ii, p by small quantities multiplied by eir(c*t-x), 
substitute into the linearized equations and derive the following dispersion relation 
for the phase velocity c* : 

where c2 is again given by (6) and T' = TDoX/2pA,. The two solutions are 

(c*-xU) ( c * - U )  = C 2 + T K 2 ,  

c* * - 1  - 2[(1 +X)uf{U'L(1 -x)2+4C2+4T'K2}i]; 

c* - - U - & (C2 + T'K2)f. 

( 1 7 4  

(17b) 

if there is no dissipation (x = 1)  these reduce to 
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The dependence on K shows the waves to be dispersive. The group velocity is 

which has the same sign as c: except for a range of wavenumbers for which cil is 
positive and cg- negative. The main conclusion is that, however large U is compared 
with c, there is a value of K sufficiently large that cf and cg- are negative. In  other 
words, the presence of longitudinal tension allows perturbations to travel upstream 
in the form of short-wavelength waves. A fuller discussion of wave propagation in 
collapsible tubes with longitudinal tension is given by McClurken et al. (1981). 

We should also note that, even when the longitudinal tension is negligible (T' = 0), 
it is possible, according to this model, for waves to propagate upstream in the region 
of separated flow where x < 1 even when U > c.  From equation (17a) it  can be shown 
that c! < 0 if U < c / l / x ;  thus for x = 0.2, upstream-propagating waves are possible 
for values of U / c  up to about 2.2. 

2.6. Boundary and initial conditions 
The system of governing equations - (4), (lo), (11) and (16) - is fourth order in x, so 
four boundary conditions are required. Two of these come from the requirement that 
the cross-sectional area of the collapsible tube must equal that of the rigid tubes at 
each end (A,). The other two introduce the mechanical properties of the rigid parts 
of the system, because the given flow parameters are the pressure PR in a static 
reservoir far upstream, and atmospheric pressure (zero) far downstream. The pressure 
drop across each rigid tube will consist of a resistive term, taken proportional to the 
square of the flow rate because of the presence of constrictive control valves (Conrad 
1969, and figure l),  and an inertial term, taken as an effective length times the fluid 
acceleration. The four boundary conditions are thus : 

A(0, t )  = A,;  (18a) 

A(L, t )  = A,;  W b )  

p ( 0 , t )  = pR-~pua(O, t ) -pL ,Ut (O ,  t)-klA:$(O, t ) ;  (184 

p(L, t )  = k,  A: G ( L ,  t )  +pL,  U t ( L ,  t ) .  ( 1 8 4  
In all the numerical calculations to be described, we take the initial state to be 

one in which the collapsible segment has uniform area A,, and in which friction is 
negligible within the collapsible segment so that the velocity is uniform and 
subcritical, with a given value Ul less than the value of c given by (6) when A = A, : 

A(%, 0) = A,, U(x, 0) = El. (19) 
The corresponding value of p,, held fixed in the subsequent computations, is then 

(20) 
given by (18c,d) to be 

PR = {ip + (k, + k8) A:} ; 

the initial value of p ,  is given by (10) and (18d) to be 

peo = k , A : q - P ( A , ) .  (21 1 
Collapse of the tube is then initiated by increasingp, over a short time to to a higher 

constant value : 
t 

p -p =pel- for 0 9  t < t o ,  
t0 

e eo 

=pel for t 2 to. (22) 
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Also the friction function F ( 8 )  is switched on at  t = 0, if required. Numerical 
integration is performed for t > 0. In some cases a steady state is eventually set up 
and in some cases oscillations develop. 

2.7. Non-dimensionalization 
The scales used for non-dimensionalization are as follows: lengths Do; area A,; 
velocity c, = (kK, /p) t ;  pressure, pc:; time D,/c,. Note that c, is the speed of wave 
propagation given by (6)  when A = A, and P ( u )  is given by ( 3 b ) .  The dimensionless 
wave speed in general is given by c2 = aP'(cz)/k. We introduce a = A / A ,  (cf. ( 3 ) ) ,  write 
u = U / c ,  and retain p ,  t and x for dimensionless pressure, time and longitudinal 
coordinate. The governing equations and boundary conditions become 

(23 1 
(24)  

at + (?la), = 0 ;  

Ut + (x) uu, = - p ,  -f% 
where x ($2 .4)  is different from 1 only in the separated-flow region, and 
f (a ,  u, t )  = Do F/c, ,  with F given by ( 8 )  in the attached-flow region; 

where u = T/pc;  Do and P(a)  is given by (3c); 

a(0, t )  = a(A, t )  = "1, 

where a, = A,/A,  2 1 ,  A = L/D,;  

where 

and a(x,O) = a, 2 1 ,  u(z,O) = u1 < c, =a:. (27)  

The initiation of the motion is given by (22) .  

2.8.  Parameter values 
It is not intended to give exhaustive coverage of all possible parameter values, but 
merely to demonstrate qualitative behaviour in a particular example that is typical 
of experiments such as Conrad's (1969).  

The lengths of the two rigid tubes are taken to be the same, at various values 
(A, = A, = 1 , 2 , 1 0  or 20) ,  while the collapsible tube segment is taken to be 5 or 20 
diameters long (A = 5 or 20) .  The associated resistance constants are chosen to be: 
ql = 50 or 00 (the latter representing a constant inflow rate at x = 0), q2 = 40 or 50. 
The area of the rigid tubes is taken t o  be the same as, or 10% greater than, the 
undeformed area of the collapsible tube : a1 = 1 .O or 1 . 1  (this variation has negligible 
effect). The inflow velocity is taken to be very subcritical: u, = 0.05 or 0.1. The 
constant k, representing the stiffness of the elastic tube when distended ( 3 b ) ,  takes 
the value of 100 (Bertram & Pedley 1982) and the longitudinal tension parameter 
c is given the value 1 , 2 , 4  or 0.2.  The dimensionless pressure pel  by which p ,  is raised 
to start the collapse (22)  is usually taken to be 0.05, although one run was done with 
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pel = 0 .2 ;  note from (21) that p,, takes the value 0.051 when al = 1 . 1 ,  u1 = 0.05, 
qz = 50. The dimensionless time to over which p ,  is raised is taken to be 10. 

In  envisaging the experiments, we assume dimensional values of A, = 1 cmz 
(Do = 1.13 cm), c, = 100 cm s-l, p = 1 g v = 0.011 cm2 s-l. These values are 
inserted into the friction function F (8) when the flow is unseparated. We recall that, 
in the separated-flow region, x (24) is given the value 0.2 or 0.5, while the critical 
pressure gradients for the initiation or disappearance of separation are represented 
by the constants (13a, b) y1 = 0.3 or 0.2, yz = 0.05 or 0.1. 

3. Numerical method 
3.1. Finite-difference scheme 

The pressure is eliminated from the governing equations by substituting (25) into (24) ,  
so that, if the region 0 < x < A is divided into n segments of length Ax = h/n ,  there 
are 2n variables whose time variation must be described. These are u, = u( j  Ax, t )  for 
j = 1,2,  ..., n+ 1 ,  and a, = a ( j A x , t )  for j = 2 , 3 ,  ..., n ;  and a(n+l) are given by 
(26a, b) .  The 2n equations from which these unknowns are calculated consist of 
2n-2 finite-difference representations of (23) and (24, 25) at the internal points 
( j  = 2 ,3 ,  ..., n ) ,  and the two equations representing the pressures at the ends: (26c, d ) ,  
with (25) to eliminate p again. Most of our computed results were obtained with 
Ax = 0.5;  accuracy was verified by varying it between 0.125 and 1.0. 

To integrate the equations we have used an adaptation of the MacCormack 
finite-difference scheme (Roache 1972, p. 253), which is an explicit two-level 
predictor-corrector scheme, often used for solving hyperbolic equations. It is 
second-order accurate in both Ax and At, the time step. The choice of At is made from 
considerations of numerical stability. We 9lways took 

where c = [aP(a) /ky  is the dimensionless wave speed; (28)  reduces to the standard 
stability criterion in the purely hyperbolic case when r7 = 0 and, while not rigorously 
proved, was shown empirically to ensure stability when r7 + 0. 

The procedure for cases in which the flow separates is to calculate at each time 
step the finite-difference representation of pJu2  (13a, b), using a centred difference 
for p,. As t increases, this quantity will first exceed y1 at a particular t and at some 
values of x ,  the smallest of which we call x, ;  for all x in the range x, < x < h the 
parameter x (24)  is immediately reduced from 1 to the chosen separated-flow value. 
In some runs x ,  was held fixed thereafter. However, at later times, p,/uz may exceed 
y1 at smaller values of x ,  so in the full model x, is allowed to fall. Later still, p,/u2 
may fall below y2 at x ,  and for a range of larger x (2, < x < xi  say) and in that case 
either x is restored instantaneously to the value 1 for all x in that range or x, is 
convected downstream with the local flow velocity: considering x ,  as a function of 
t we have 

(29) x,(t + At) = xJt) + u(x,,  t )  At, 

where in fact the closest grid-point to (29)  is chosen. 



386 C .  Cancelli and T .  J .  Pedley 

3.2. Reliability of steady and unsteady solutions 
Whenever the time-dependent solution tends eventually to a steady state, that steady 
state is completely reliable. Even with the large Ax value of 0.5, the equilibrium flow 
rate and (in cases where dissipation was suppressed) total head are uniform to within 
2 % (1 yo if a remains above 0.15), an error which is reduced by reducing Ax. 

The reliability of the transient phase of the solution is less certain, as there is no 
overall check like that of uniform flow rate. However, as long as the numerical 
stability criterion (28) is satisfied and Ax is sufficiently small, we find that the solution 
is independent of Ax and At, at least for components of the disturbance that have 
wavelengths significantly greater than Ax. An example is shown in figure 3, where 
u is plotted as a function of time, at two different values of x ,  for a case in which 
a steady state eventually develops. The different symbols represent two values of Ax 
(=  0.5 and 0.25), with corresponding At values differing by a factor of about 4, and 
it can be seen that the two sets of points lie on the same curves. 

These results are not conclusive, however, when it comes to the prediction of 
oscillations. We find ( $ 5 )  that oscillations normally develop as a result of the coupling 
between pressure waves and the position of the separation point in the flow just 
downstream of the narrowest point. In  almost all the cases we considered, holding 
this point fixed leads to the development of a steady state which is therefore stable. 
The question arises whether, in ensuring that our finite-difference scheme is 
numerically stable, we have not suppressed physical instabilities, such as those 
predicted by lumped-parameter models. To investigate the answer, we have (a)  
performed a linearized stability analysis of the predicted steady flow, solving the 
resulting ordinary differential equations numerically (8 3.3), and ( b )  analysed the 
lumped-parameter system that most closely represents our model, to see when that 
predicts instability (see Appendix), and then integrated our equations for the same 
parameter values. 

The lumped-parameter model predicts (oscillatory) instability only if the down- 
streamresistancev, isextremely small (lessthan0.344for the parameter valueschosen), 
and the flow does not then need to be supercritical. A numerical solution of the full 
model for the same parameter values is shown in figure 4, and indeed reveals the 
existence of oscillations for a subcritical flow and a fixed separation point. The 
amplitude of the oscillations is very small, the cross-sectional area at the narrowest 
point remaining close to 0.38, and the dimensionless period is approximately 5.2. In 
order to ensure accuracy for these computations, At was reduced to 0.1 times the value 
given by (28). The predictions of the lumped model are that the equilibrium area is 
0.372, in good agreement with figure 4, and that the period of oscillation is about 
41.4, in poor agreement. 

We conclude that the full numerical model predicts oscillations when the parameter 
values are such as to yield oscillations from the lumped-parameter model, which 
suggests that it does not necessarily suppress physical instabilities other than the one 
discussed in $5. This view is reinforced by the results of the stability analysis of the 
next section. 

3.3. Stability of the steady state 
In order to investigate the stability of one of the computed steady states we write 
the dependent variables as a mean, 2-dependent, value plus a small perturbation, e.g. 

u(z, t )  = U(Z) + u’(2, t ) .  
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FIGURE 3. Plots of u(0, t )  and u(1.5,t) for a case in which a steady state develops, showing the 
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A, = A ,  = 2, A = 5, ql = =50, u = 1, ul =pel = 0.05 , f=O,  X’ 1. 



388 C. Cancelli and T. J. Pedley 

Substitution into the governing equations and boundary conditions (23-26), linear- 
ization, and discretization of the z-variable into n steps leads to the following system 
of 2n ordinary differential equations : 

%= v&,, 
dt 

where wt is the 2n-vector (ui, ui, . .. , u:+~, a;, ..., a;) and V, is a 2n x 2n matrix whose 
components depend on the steady solution and the parameters of the system. If any 
of the eigenvalues of 6, has positive real part, then the steady state is predicted to 
be unstable. These eigenvalues were determined numerically, the functions U(z)  etc. 
also being computed from the steady-state solution of the original initial-value 
problem. Note that, in this stability calculation, the separation point 2, was held fixed 
at its steady-state value. 

In computing the components of &,, it is necessary to evaluate the z-derivatives 
of u' and a'. It immediately becomes apparent that how these derivatives are 
numerically evaluated is crucial to the results. For example, if upwind differences are 
taken, the perturbations are independent of the properties of the downstream rigid 
tube ( q e , A z ) ,  and, if downwind differences are taken, they are independent of the 
upstream-tube properties (ql, Al) .  Either must be wrong, because the acceleration in, 
say, the downstream rigid tube must depend on the inertance of that tube, etc. Some 
form of mixed differencing must therefore be used. 

We used three different schemes to calculate the elements of h,: 
(i) central differences in both continuity and momentum equations ; 
(ii) upwind differences in the momentum equation and downwind differences in the 

continuity equation ; 
(iii) upwind differences in the momentum equation and central differences in the 

continuity equation. 

If the computed eigenvalues of V, are approximately the same for each scheme, we 
can be confident of the results. In  fact, however, only about a third of the 2n 
eigenvalues, those corresponding to the lowest frequency or longest wavelength 
disturbances, are satisfactorily reproduced when the differencing scheme is changed. 
Many of the rest are completely different. Of the reproducible eigenvalues, none has 
a positive real part, but some of the irreproducible ones do have positive real parts. 
However, as n is increased, the reproducible eigenvalues are repeated while the 
irreproducible ones are not. The eigenvalues with positive real part shift towards 
higher frequencies. We conclude, therefore, although without absolute certainty, that 
the instabilities associated with the irreproducible eigenvalues have no physical 
meaning and that the computed steady states are stable. Hence we can have 
confidence in the numerical scheme for solving the full equations and presume it does 
not suppress any genuine physical oscillations. 

4. Results and discussion: non-oscillatory cases 
4.1. No dissipation in the collapsible segment 

We first examine the collapse process when there is assumed to be neither viscous 
friction (f = 0) nor flow separation (x = 1). Results are presented in figures 5-8 for 
the case in which A, = Az = 1, qI = yz = 50, CT = 2, k = 100, a1 = 1, A = 20, 
pel = 0.05, u1 = 0.1. The time to over which the external pressure is raised from p,, 
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to peo+pel (22) is equal to 10 units, about half the time for a long wave to travel 
the length of the collapsible segment, at  least while c a 1, before collapse. The inlet 
value of u/c is at  first equal to 0.146. 

The uniform increase in external pressure is initially accompanied by a uniform 
increase in internal pressure, and no flow. However the boundary conditions (26c, d )  
cause waves of lower pressure to propagate in from the ends, with a corresponding 
reduction in area : the velocity is reduced at x = 0 and increased at 2 = A. After these 
waves have met in the middle, a falls almost uniformly (except near the ends). This 
is shown in figure 5,  where a, p ,  u and u/c are plotted against x at t = 35.8. The 
pressure in the centre of the tube, initially uniform and equal to 0.5, is falling from 
its maximum value of 0.55 because of the waves. The slight asymmetry of the p -  and 
a-distributions is a consequence of fluid inertia, since ut is negative at the upstream 
end and positive at  the downstream end. Note that u(0, t )  haa fallen below u1 by about 
5 %, and u(A, 1 )  has risen by about 4 %. The flow is very subcritical, because u/c is 
everywhere less than 0.18. 

As long as the flow remains subcritical, the collapse proceeds in a nearly 
symmetrical manner, as can be seen from figure 6, where the same quantities as in 
figure 5 are plotted at t = 1254. There is still slight asymmetry in p and a, and from 
the u-curve we can see that the inflow velocity is still slightly below its initial value, 
and the outflow velocity slightly above. In cases where we chose either a significantly 
smaller inlet velocity (ul = 0.05) or a significantly larger longitudinal tension (a = 4 )  
a steady state waa eventually set up, looking much like figure 6 except that it was 
completely symmetrical because of the lack of dissipation in the collapsible segment. 
It is the presence of dissipation in the rigid segments that makes a steady state 
possible. 

In the case shown, however, this did not happen because the flow became critical. 
Figure 6 shows u/c very close to 1 in the middle of the tube (in fact the value at which 
new behaviour begins is a little larger than 1 because of the influence of the 
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longitudinal tension). A little later, a critical value was exceeded, and the collapse 
process changed completely. Figure 7 shows the position a t  t = 2000. The fall in area 
near the narrowest point is associated with a marked favourable pressure gradient 
upstream of it. However, this is inadequate to accelerate the fluid to the velocity that 
would be required by a uniform steady flow rate, so a at the narrowest point must 
continue to fall, by conservation of mass. Downstream of the narrowest point there 
is an adverse pressure gradient associated with the area expansion, but this is not 
enough to slow down the velocity; the fluid is further accelerated, and the downstream 
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FIGURE 8. a plotted against z for four values oft. Parameter values as in figure 5. 

section of the tube is emptied increasingly rapidly. Combined with a slight reflation 
upstream, this means that the narrowest point moves downstream while the area a t  
it decreases. The presence of longitudinal tension allows short waves to propagate 
upstream, causing fluctuations in velocity and pressure a t  the inlet, but these do not 
alter the collapse process overall. 

In  the absence of dissipation in the collapsible segment, this process, once started, 
inevitably continues until the area at  the narrowest point reaches zero ; in the present 
example this occurs just after t = 2058. Figure 8 shows plots of a as a function of 
x at this time as well as those plotted already. The negrly complete collapse, and the 
reflation upstream, are obvious. 

That complete collapse is inevitable follows from the requirement in steady flow 
(flow rate q, say) that H = p + b 2 / a 2  be uniform. In the state represented by figure 7, 
His greater at  the narrowest point than just upstream, so, for H to become uniform, 
p must decrease more rapidly, as a decreases, than q2/2a2 increases. In other words, 
dplda must be greater than q2/a3 = u2/a. But dplda x c2 /a ,  since the longitudinal 
tension term cannot become very large a t  small a, from (25) and the definition of c. 
Hence the collapse cannot be halted while c < u. 

4.2. Influence of dissipation: $ow limitation 

The presence of dissipation in the collapsible tube permits the outflow velocity to be 
slowed down relative to the inflow velocity so that a steady state is possible, although 
it may be unstable and lead to oscillations - see $5. We first consider what happens 
when all the new dissipation is associated with flow separation, so that f = 0 and x < 1 
in (24) for x > 2,. Oscillations were avoided by holding xs fixed during the transient 
collapsing phase and adjusting it gradually to the correct position (given by (13a) 
with y1 = 0.3) once the steady state was reached. No qualitative difference is observed 
in cases where the dissipation-free calculation leads to a steady state. However the 
complete collapse predicted above for cases of supercritical flow is halted. The 
steady-state distributions of a, u and H = p + h 2  (total head) are plotted in figure 9 
for x = 0.2 (curves a) and 0.5 (curves b), other parameters being as in figures 5-8. 

The most striking feature of these results is that the steady-state flow rate is 
virtually unaffected by the value of x or v2 : although the u(z) distribution is greatly 
affected, the eventual steady value of u(0) or u(A) is almost identical with the more or 
less constant value of u(0, t )  seen h figures 5-7. This is consistent with the fact that, 
when the flow becomes supercritical, long waves cannot propagate upstream from 
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FIGURE 9. Steady-state solutions when there is dissipation due to flow separation: plots of 
H = p+&* (closed triangles), u (closed rectangles), a against x. Marks on the a-curves indicate the 
points of flow separation. Parameter values: a1 = 1, h = 20, 7, = 50, c = 2, u1 = 0.1, pel = 0.5, 
f =  0, y1 = 0.3. Curves (a) yP = 50, x = 0.2; ( b )  71e = 50, x = 0.5; (c) q2 = 40, x = 0.2. 

the narrowest region, so that the adjustment of the flow takes the form of a 
downstream deceleration. Thus, if the flow becomes supercritical, the steady-state flow 
rate remains the same whatever happens downstream: this is ‘flow limitation’ 
(Dawson & Elliott 1977). In  fact, although it cannot be seen in figure 9, the flow rate 
is slightly lower for the higher value of 2, which seems surprising, since larger x means 
less dissipation per unit length, other thingsbeing equal. However, we see from figure 9 
that, when x is larger, the collapse proceeds further before it is arrested (the 
narrowest area becomes smaller and moves downstream) and the total dissipation is 
somewhat larger (see the total head curves). 

Further evidence of flow limitation is seen from curves (c) of figure 9, for which 
the parameters are the same as for curves (a) except that the downstream resistance 
of T~ has been reduced from 50 to 40. This reduction of downstream resistance means 
that the pressure near x = A falls, so that the collapse point moves downstream and 
the narrowest area becomes smaller. A corresponding reflation takes place upstream 
of the collapsed region, and the flow rate again remains almost constant, falling very 
slightly. 

Steady-state solutions can also be obtained with direct viscous friction as well as 
(or instead of) flow separation. However, curves (a) of figure 9 are not noticeably 
affected by the inclusion of the friction term, and we conclude that it is unimportant 
for realistic parameter values. 

The usual sort of evidence of flow limitation consists of graphs of the pressure drop 
across the collapsible segment, p(0)  -p(A),  against the steady-state flow rate u, when 
the pressure differencep(0) -pe is held constant (Lambert & Wilson 1972). In  figure 10 
we show an almost equivalent plot, in which p ,  is held constant but instead of 
p ( 0 )  it is the driving pressure p ,  = [++ (rll+q2)a;]u? that is held constant. The 



Separated-$ow model for collapsible-tube oscillations 

A; @ 

393 

t 5 x lo-’ 

I 

i o  
I 

L A @ A &  2 

0 0.05 0.1 ua 

FIGURE 10. Flow limitation: plot of p(0)  -&A) against ua when the flow is steady. For explanation 
of regions 1, 2, 3, 4 see text. Parameter values: a, = 1 ,  A = 20, A, = A, = 10, 9,  = 50, u = 2, 
x = 0.2, y, = 0.3, p ,  = 0.554, p ,  = l.009,f=+ 0; 9, was varied from 200 to 30. 

downstream pressure p ( h )  is varied by allowing qz to decrease from 200 to 30. In the 
region of the curve with wr < 0.5, the tube is slightly inflated. In region 1 there is 
a slight indentation but no flow separation, and the slight rise of p ( 0 )  -p(A) with ua: 
is a consequence of laminar friction (which is included in this case). At point 2 the 
flow first separates and there is a discontinuous jump to point 3. Continuous passage 
from 3 to 4 (qe = 50) is also not possible *cause choking occurs there. From 4 
onwards, the tube is dramatically collapsed along almost all its length, and further 
reduction in qz is in fact accompanied by a slight decrease of flow rate (a phenomenon 
well known to respiratory physiologists in the context of forced expiration, and 
referred to as ‘negative effort dependence’). 

5. Results and discussion: sustained oscillations 
5.1. The prediction of oscillations 

We have seen that small-amplitude oscillations may arise when the flow is subcritical 
if the resistance of the downstream rigid segment is sufficiently small (figure 4), as 
predicted by lumped-parameter models (Appendix). However, most experimentalists 
report oscillatory behaviour if and only if the flow becomes supercritical somewhere. 
When the lumped model predicts stability, our model predicts stable, steady, 
supercritical flow if the point of flow separation zs is prevented from moving during 
the collapse process ($4.2). We now present the results of the full model in which xs 
is allowed to move according to  the local value of the adverse pressure gradient, as 
specified in $2.4. We found oscillations in every case examined for which the flow 
became supercritical anywhere (we also found some oscillations in some subcritical 
flows for which stability was predicted by the lumped model, but these were again 
of very small amplitude : see below). Moreover the generation of these oscillations is 
found to be intrinsic to the collapsible tube and cannot be accounted for by the 
lumped-parameter model. Quantitative aspects of the oscillations, such as amplitude 
and frequency, may be influenced by the rest of the flow circuit, but their existence 
is not. 
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FIGURE 11. Self-excited oscillations for the case in which the (unstable) steady state is shown in 
curves (c) of figure 9: plots of u(0, t ) ,  u(A, t ) ,  p(A,  t )  and L = A-z, against t .  Additional parameter: 
yz = 0.05. Separation disappears suddenly (aee text). 

We begin by reconsidering the case for which the steady state is depicted in curves 
(c) of figure 9; the additional parameter values are 7, = 50, A, = A, = 20, and Y,, 
which defines the pressure gradient at which separation ceases (13b), = 0.05. The 
results are plotted in figures 11 and 12 : figure 11 shows u(0, t ) ,  u(A, t ) ,  p(A, t )  and 
L = A-x, (the distance of the sepration point from the downstream end of the 
collapsible segment) as functions o f t ;  figure 12 shows a and p as functions of x at 
different times t .  To save computing time the initial condition for these calculations 
was taken to be the steady state with q2 = 50 (curves (a) of figure 9) ; 7, being reduced 
to 40 at t = 0. Oscillations have clearly developed. Their amplitude is not large (the 
peak-to-trough value for u(A, t )  being about O.OOS),  but is considerably larger than 
in the subcritical case of figure 4. The period of the oscillations is about 9.5 units, 
and the maximum value of A - x, is about 5 : the period is thus comparable with the 
time that a wave of speed 1 would take to propagate from the furthest upstream 
separation point to the outlet (x = A) and back again. 

Figures 11 and 12 show that the velocity and pressure amplitudes at x = 0 are less 
than those at x = A, which is consistent with the fact that long waves cannot be 
propagated upstream when the flow is supercritical., Because of longitudinal tension, 
however, short waves can overcome this restriction, and we observe them particularly 
in the graphs of p against x. It is the oscillation in A - x, which above all exemplifies 
the nature of the oscillations; if after a ceMain time i t  is held fixed, the oscillations 
in the other quantities die away. 

In the calculations of these figures, the disappearance of separation when p, a t  x, 
falls below its critical value (13b) was sudden: x was immediately set equal to 1 for 
the whole range x, < x < xi for which p ,  is below its critical value. In  later 
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FIGURE 12. Plots of p and a against x for various values oft ,  for the case shown in figure 11. 

calculations the separation point was convected downstream at the local fluid 
velocity, as given by (30). In  that case graphs corresponding to figures 11 and 12 are 
shown in figures 13 and 14. Oscillations still occur, albeit with slightly smaller 
amplitude (0.006 in u(A, t ) )  and larger period (about 12 units) ; the main difference 
is the smoother variation of A-x,. 

Varying the other parameters associated with separation (x, yl ,  and yz)  also affects 
the quantitative details of the oscillations to a slight extent, but, as long as x, is 
allowed to vary and the flow becomes supercritical somewhere, qualitatively similar 
oscillations always occur. It is not the purpose of this paper to provide a thorough 
study of the effects of varying all the parameters of the model, and we restrict 
ourselves to three observations. 

(i) The value of 2.0 chosen as the standard for the longitudinal tension parameter 
(r is somewhat larger than one would expect to find in an experiment (see 96 below). 
In one run with the smaller value of u = 0.2 there were considerable numerical 
difficulties, mainly because the constriction is moved much closer to the downstream 
end of the collapsible segment and there is a very rapid expansion downstream, with 
a short separated-flow region. The computation could be successfully performed only 
with a larger value of r ] ,  than that used in figures 11-14 : 50 rather than 40. However, 
the oscillations in u(A, t )  are not greatly affected: the amplitude is reduced to about 
0.004 and the period increased to about 16. The oscillations in u(0, t )  are considerably 
reduced, as expected since a lower tension means less upstream wave propagation. 

(ii) Inceasing the excess external pressure pel has the obvious effect of reducing 
the minimum mean area. Oscillations still occur unless pel is so large that the 
divergent portion of the tube near x = A is too short for variations of x, to be possible 
(in our model, q has to vary by at least Ax before oscillations can occur). In  figure 15 
results are shown for the case p,, = 0.2, and we see that the amplitude of the 
oscillations has fallen, the period has increased, and the oscillations have become more 
irregular, when compared with figure 11. 
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FIQURE 13. As figure 11 ,  except that separation disappears gradually. 

(iii) The quantitative details of the oscillations when they occur clearly depend on 
the conditions in the upstream and downstream rigid segments (see Conrad et al. 1978 
and Pedley 1980), although their excitation by the present mechanisms is unaffected. 
In figure 16 we show the oscillations in u(0, t ) ,  u(h, t ) ,  p ( 0 ,  t )  and p(A,  t )  for the case 
in which A, = A, = 1, other quantities being the same as in figure 11. The amplitude 
of the velocity oscillations has increased, to 0.016 for u(A, t ) ,  and they are more nearly 
in phase with the pressure oscillations, as one would predict for small inertia, but 
the general shape is the same as in figure 11, and so is the period (9.5). 

Finally we demonstrate that oscillations can be predicted even when the flow is 
subcritical everywhere and the lumped model indicates stability, as long as the 
separation point is allowed to vary. However, they have extremely small amplitude, 
and no clear demarcation between states with and without oscillations has been 
identified. An example is shown in figures 17 and 18 for a case in which the parameters 
are the same as in figure 11 except that qz = 50 and u1 = 0.05 instead of 0.1. 

We see that the amplitude in u(A ,  t )  is down to 0.0007 but that the oscillations have 
become rather irregular and of much longer period. The fact that the flow is subcritical 
is reflected in the longer wavelengths of the waves upstream of the narrowest point 
(figure 18). It should be noted that these oscillations are not robust and may be quite 
unphysical, because in order to find them at all we had to reduce y, to 0.2 (from 0.3) 
and raise y, to 0.1 (from 0.05). Moreover, the predicted amplitudes of these 
oscillations and those of figure 4 are so small as to make them virtually undetectable. 

5.2. Detailed dynamics of the oscillations 
The dynamics of the oscillations can be discussed with reference to the pressure curves 
in figure 14. At t = 3.00 the pressure gradient in the outlet region is largely favourable, 
and we expect the separation point to have been moving downstream. The plot of 
L against t in figure 13 confirms that x, reaches its furthest downstream position a 
little after this time. 
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FTQURE 14. As figure 12, except that separation disappears gradually. 
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FIQURE 15. Oscillations with a larger external pressure. Plots of u(0, t ) ,  u(h, t ) ,  
L(t).  Parameter values as in figure 11, except pel = 0.2. 

As the separation point moves downstream, the flow emerging from the constriction 
remains attached for a greater distance and the local flow rate (and hence u) increases : 
in other words u, > 0 there. This accelerating, reattached flow acts like a piston and 
sends a high-pressure wave downstream and a low-pressure wave upstream towards 
the constriction. (We have avoided the phrases ‘compression wave ’ and ‘expansion 
wave ’ because, for example, the low pressure in an expansion wave is associated with 
small cross-sectional area and it would look as if the tube were being compressed.) 
The fluid immediately downstream of the constriction is sucked downstream, so that 
the constriction itself narrows and moves towards the outlet. 
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FIGURE 16. Oscillations with less inertia in the rigid parts of the system. Plots of u(0, t ) ,  u(A, t ) ,  p(0 ,  t ) ,  
p(A, t ) .  Parameter values as in figure 11,  except A, = A, = 1. 
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FIGURE 17. Subcritical oscillations. Plots of u(0, t ) ,  u(A, t ) ,  p(A,  t ) ,  u(iA, t ) ,  L(t). 
Parameter values as in figure 11  except ts. = 50, u1 = 0.05. 

When the high-pressure wave reaches the outlet (x = A)  there is a build-up of 
pressure there as the wave is reflected, and an adverse pressure gradient is established 
(see the pressure curve at t = 5.53 in figure 14). This first halts and then reverses the 
motion of the separation point. As the separated-flow region spreads backwards the 
average velocity starts to fall again. This time a high-pressure wave moves upstream 
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RUURE 18. Plots of p against x for various times t ,  during the oscillations depicted in figure 17. 

to be superimposed on the reflected wave, and alow-pressure wave moves downstream. 
However, if the flow upstream of the separation point is supercritical, the upstream- 
moving waves cannot proceed far. They tend to pile up, generating a pressure 
maximum which pushes the separation point further upstream. (The piling-up effect 
will be somewhat mitigated by the presence of longitudinal tension, which enables 
short waves to propagate upstream to the inlet : however, these have relatively small 
amplitude, as can be seen from figure 14.) The pressure maximum will be associated 
with an increase in area, so during this phase the constriction will become less severe 
and will move upstream (see pressure curves at t = 9.56 and area curve at t = 12.1, 
when the separated-flow region is longest). 

This phase too must come to an end. The downstream-moving low-pressure wave 
reduces the pressure at the outlet, diminishing the outflow velocity u(h, t ) ,  which by 
t = 9.56 has already passed its maximum value (figure 13). A train of low-pressure 
waves is generated at the outlet, and moves upstream. These waves overtake the 
high-pressure waves where they are piled up, and cause the pressure maximum to 
fall, weakening the adverse pressure gradient. This can be seen clearly by comparing 
the t = 6.62 and the t = 8.74 pressure curves of figure 12. A t  the later time the pressure 
rise has moved upstream but its magnitude has been sharply reduced. The separation 
point is now at its furthest upstream; a little later, the pressure gradient becomes 
too weak for separation to occur and the separation point moves downstream again. 
Then the whole cycle restarts. 

In  summary, the key mechanism of the oscillations is the movement of the 
separation point in response to the local pressure gradient. It moves upstream when 
a high-pressure wave is moving up from the outlet, and moves downstream again 
when.the strength of that wave is diminished by the low-pressure wave that follows. 
The reason that the oscillations are much stronger when the flow is supercritical is 
also clear : the pressure peak cannot propagate far upstream and is therefore readily 
caught by the following trough. In supercritical flow the period of the oscillations 
is clearly related to the time of travel of a wave from the constriction to the outlet 
and back. 
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6. Concluding remarks 
Ideally, we would now compare our predictions with experiment, showing to what 

extent the frequency and waveform of the predicted oscillations agrees with those 
observed. Unfortunately, not only does our model still contain numerous simplifica- 
tions, but none of the authors who describe self-excited oscillations give enough of 
the experimental parameters for a good simulation. In particular, very few papers 
quote any elastic parameters, even the Young's modulus E of the tube wall, although 
linear elasticity theory gives the following estimates for the dimensional parameters : 

where h is the wall thickness, n is the Poisson's ratio and E is the longitudinal strain. 
Lyon et al. (1981) are the only authors to quote values for E (0 < E < 0.67) but do not 
give E. Note that the given estimate for T gives cr = (1 -n2) E ,  = 0.7% when n = a 
as for an incompressible material. 

The non-dimensionalization of this paper scales the period of the oscillations, l/Q, 
with the time for a wave to travel a distance of one diameter, when the tube is 
distended and the speed is co. The oscillations, however, occur when the tube is 
collapsed and the wave speed, c" say, is much smaller. Moreover the relationship 
between c" and co depends very much on the form of P(a) ,  which is likely to vary 
markedly from one experiment to another; the forms (3a-c) chosen by us are highly 
idealized. In  making comparison with experiment, therefore, we consider the value 
of tbe quantity B = c"/QDo, where c" is the wave speed evaluated at a = a", a small 
value. In  our model, Ze = 1.5(Kp/p)&i, and we shall choose a" = 0.1, close to the 
minimum predicted value (figure 12), so that 

Thus the predicted dimensionless periods of 4-16 are equivalent (with k = 100) to 
B = 6.2-11.0. It should be borne in mind that, in comparing predicted and 
experimental values of 9, we are assuming that its dependence on other dimensionless 
quantities (the precise value of &, cr, .ii/C, A ,  etc.) is slight, which may not be true. 

Authors who quote frequencies and give some information on elastic parameters 
include Conrad (1969), Bonis (1979) and Bertram (1982). From Conrad's data and 
(31)wecomputek = 2 . 8 ~  104,c0 = 1.25 m s-'andD0 = 1.27 cm.Hequotesosoil1ation 
frequencies 0.5-1.0 Hz, which are equivalent to values of B in the range 4-8, quite 
close to our predicted range. The data of Bonis (1979) lead to k = 1500 and 
co = 7.22 m s-l (Do = 1.14 cm). He describes two sorts of supercritical oscillation, a 
' high-frequency ' vibration localized near the outlet and a large-amplitude oscillation 
of much lower frequency, with a period ranging between 1.5 and 15 s. The latter are 
equivalent to B values between 169 and 1690, which are far above our predictions. 
Bertram (1982), with k = 19, co = 21 m s-l (assuming that E has the same value as 
for Bonis), and Do = 1.25 cm, also reports two types of oscillation: high-frequency 
vibrations (Q = 30-40 Hz) and low-frequency 'milking' oscillations, in which the 
constriction first appears in the upstream half of the tube and then propagates, 
becoming more pronounced, toward the downstream end. The frequency of these 
oscillations is 2-3 Hz. The corresponding values of B are 884-1327 for the milking 
oscillations and 66-88 for the high-frequency vibrations. These results suggest that 
it is the vibrations that, if anything, are simulated in our model. 
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Ur & Gordon (1970) quote very few parameters, but give excellent detailed records 
of p(0 ,  t )  and p(h,  t )  during the oscillations. The shape of the p(h,  t )  waveform is 
qualitatively similar to that shown in figure 11, in that there is a double peak 
occupying about f of the cycle, followed by a relatively quiescent phase. They quote 
oscillation frequencies 52 of 12-50 Hz which, if we assume parameters similar to those 
of Bonis (1979), are equivalent to dimensionless periods B = 2.3-9.4. 

The above comparisons emphasize the difficulty in trying to use the present 
qualitative model to simulate particular experiments. The feature of the model that 
most clearly requires improvement is the modelling of the head loss in the separated- 
flow region, because it ignores the inevitable lag time between the initiation of 
separation and the full development of energy dissipation in the jet. In  the 
experiments of Bertram & Pedley (1983) this lag time has a dimensionless value of 
around 7, comparable with the predicted period of oscillation. The next generation 
of models should incorporate such a lag, although one hopes that a more complete 
description of the dissipation process can also be developed. However, we believe that 
the oscillation mechanism highlighted in this paper is both new and relevant to 
collapsible-tube experiments. 

Dr Cancelli is most grateful to the Accademia Nazionale dei Lincei, who supported 
him during his visit to Cambridge in 1981, when most of the work described in this 
paper was performed. 

Appendix. A lumped-parameter model 
We combine the principal features of the models of Schoendorfer & Shapiro (1977) 

and of Pedley (1980). The collapsible tube is represented two-dimensionally as a pair 
of circular membranes (figure 19), separated by a dimensionless distance a(t) at the 
narrowest point (the same non-dimensionalization is used as in $2.7). The elastic 
properties are modelled by superimposing a tube law relating p( t )  (internal pressure 
at the narrowest point)-p, to a and a term representing longitudinal tension (cf. 

For convenience, we restrict attention to the case in which the inflow to the collapsible 
segment u1 is held fixed; this is equivalent to taking infinite upstream resistance ql. 
The velocities at the narrowest point and in the downstream rigid tube are taken to 
be u(t) and u2(t) respectively. The fluid-mechanical equations, simplified by the 
assumption h $ a, in calculating the volume contained in the collapsible segment, 
are as follows: 

Conservation of mass al(ul-us) = ;A&, 

al u1 - au = +ha. 

Momentum equations : au2 

a1 
p - p  -us-- 

P2 = 72 4 4 + A2 u 2 ,  

2 -  2 

where, in (A 4), only the separated-flow dissipation is included, as suggested by the 
results of $4, and the Borda4arnot condition has been used in place of 1y = constant 
(if x is taken constant, the lumped-parameter model is always unstable). 
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R 1 

FIQURE 19. Sketch of the lumped-parameter model, indicating dimensionless areaa, velocities, 
pressures, and two lengths. The radius of curvature R = [AZ+ (a,-a)*]/4(a1-a). 

This system admits of a steady state in which u2 = ul, u = a, uJZ, and a = 2, where 

a 
P(E) 4Q 

pe+-- -  k A 2  

We investigate the stability of this equilibrium by setting a = Z+ a' $9t in (A 1)-(A 5), 
where a' 6 2, and linearizing to give the following quadratic equation for B :  

c z p + c l p + c o  = 0, (A 7) 

where 
AA 

c2 = 2 > 0, 
3a1 

c, = - 2r],a1+---_ , 
Aul( 3 a1 a '> 
u2a 4~ P' (E)  
a2 A2 k ' 

co = -+ +-+- 
and, from (2b), P'@) = 9% Graphical analysis of (A 6) shows that, when Z is the 
smallest root with i% c 1, then d/dE of the left-hand side is greater than that of the 
right-hand side, and hence c, > 0. Thus a root of (A 7) can have positive real part, 
implying instability, only if c, < 0; the root is complex, implying oscillatory 
instability, if in addition c: < 4c, c,. 

As in the main text, we write p ,  = p,, +pel, where peo is the value required to make 
a = a, an equilibrium state. Then the equilibrium area whose stability we investigate 
is, from (A 6), given by 

P(Z) - P(al) 4v 
Pel+ 

For numerical purposes we use parameter values typical of the examples considered 
in the main text: A = A, = 5, a, = 1,  k = 100, u1 = pel = 0.05, Q = 0.2  and r ] ,  we do 
not specify as yet. These numbers give E = 0.372. We see immediately from (A 8) that 
c, < 0 only if r ] ,  < 0.344, and in that case c: < 4c, c,. In other words, the equilibrium 
is stable unless the downstream rigid tube has very small resistance ; in that case there 
is an oscillatory instability and self-excited oscillations would be expected to ensue. 
An estimate of the (dimensionless) .period of the oscillations is 

27c 
= 47cc2(4c, c2 - c;,a, 

IImal 
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which takes the value 41.4 for the above parameters. These conclusions would still 
be true in the absence of longitudinal tension (g = 0), when the model reduces 
essentially to the constant-inflow model of Pedley (1980) or Bertram & Pedley (1982). 
We see that it is the resistance of the downstream rigid tube that governs the stability, 
and for values as high as tho& used in plotting figures 5-16, for example, no 
instability is predicted. When instability is predicted, it is independent of whether 
the flow in the collapsible tube becomes critical or not ; in fact, for the numbers used 
here, the maximum value of u/c, equal to [ku:/a3P’(a)]i, is 0.52. 
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